skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reyes, Delfino"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Practically applied techniques for ultrasonic biomedical imaging employ delay-and-sum (DAS) beamforming which can resolve two objects down to 2.1 λ within the acoustic Fresnel zone. Here, we demonstrate a phononic metamaterial lens (ML) for detection of laterally subwavelength object features in tissue-like phantoms beyond the phononic crystal evanescent zone and Fresnel zone of the emitter. The ML produces metamaterial collimation that spreads 8x less than the emitting transducer. Utilizing collimation, 3.6x greater lateral resolution beyond the Fresnel zone limit was achieved. Both hard objects and tissue approximating masses were examined in gelatin tissue phantoms near the Fresnel zone limit. Lateral dimensions and separation were resolved down to 0.50 λ for hard objects, with tissue approximating masses slightly higher at 0.73 λ . The work represents the application of a metamaterial for spatial characterization, and subwavelength resolution in a biosystem beyond the Fresnel zone limit. 
    more » « less
  2. Abstract A coupled resonant acoustic waveguide (CRAW) in a phononic crystal (PnC) was engineered to manipulate the propagation of ultrasonic waves within a conventional phononic bandgap for wavelength division multiplexing. The PnC device included two, forked, distinct CRAW waveguide channels that exhibited strong frequency and mode selectivity. Each branch was composed of cavities of differing volumes, with each giving rise to deep and shallow ‘impurity’ states. These states were utilized to select frequency windows where transmission along the channels was suppressed distinctly for each channel. Though completely a linear system, the mode sensitivity of each CRAW waveguide channel produced apparent nonlinear power dependence along each branch. Nonlinearity in the system arises from the combination of the mode sensitivity of each CRAW channel and small variations in the shape of the incident wavefront as a function of input power. The all-acoustic effect was then leveraged to realize an ultrasonic, spatial signal modulator, and logic element operating at 398 and 450 kHz using input power. 
    more » « less